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Abstract—Non-Line-of-Sight imaging has been linked to wave diffraction by the recent phasor field method. In wave optics, the Wigner
Distribution Function description for an optical imaging system is a powerful analytical tool for modeling the imaging process with
geometrical transformations. In this paper, we focus on illustrating the relation between captured signals and hidden objects in the Wigner
Distribution domain. The Wigner Distribution Function is usually used together with approximated diffraction propagators, which is fine
for most imaging problems. However, these approximated diffraction propagators are not valid for Non-Line-of-Sight imaging scenarios.
We show that the exact phasor field propagator (Rayleigh-Sommerfeld Diffraction) does not have a standard geometrical transformation,
as compared to approximated diffraction propagators (Fresnel, Fraunhofer diffraction) that can be represented as shearing or rotation in
the Wigner Distribution Function domain. Then, we explore differences between the exact and approximated solutions by characterizing
errors made in different spatial positions and acquisition methods (confocal, non-confocal scanning). We derive a lateral resolution
based on the exact phasor field propagator, which can be used as a reference for theoretical evaluations and comparisons. For targets
that lie laterally outside a relay wall, the loss of resolution is geometrically illustrated in the context of the Wigner Distribution Function.

Index Terms—Non-Line-of-Sight Imaging, Wigner Distribution Function, Computational Imaging
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1 INTRODUCTION

N ONE-LINE-OF-SIGHT (NLOS) time-resolved imaging uses
fast illumination from reflections off a relay surface and

detectors to measure signals of an occluded scene. It then uses
those captured signals to recover an image around the corner via
computational methods.

After a theoretical exploration of ultra-fast NLOS imaging [1],
[2], Velten et al. first demonstrate experiments in NLOS imaging
using a femtosecond laser and streak camera with a filtered
backprojection (FBP) algorithm. This FBP method is shown to
be similar to the solution of a computed tomography problem [3],
[4]. NLOS imaging using a gated Single-Photon Avalanche Diode
(SPAD) has been demonstrated by Buttafava et al. [5], and a
picosecond laser and SPAD experimental setup are currently
widely used in time-resolved NLOS imaging scenarios [6], [7],
[8], [9], [10]. Based on acquisition schemes, captured signals
are divided into confocal [6] and non-confocal measurements [3].
More about different acquisition schemes with simulated datasets
can be found [11].

Liu et al. [8] and Reza et al. [12] show that NLOS imaging
problems can be described using a wave diffraction phasor field
model. In the following text, we name it as phasor field NLOS
imaging. With the help of the phasor field model, one can study
time-resolved NLOS imaging as an optical diffraction problem.
Several insightful models of phasor field NLOS imaging, as well
as experiments, have been proposed and demonstrated by different
groups [13], [14], [15], [16].

In classical optics, the Wigner Distribution Function
(WDF) [17] and its Fourier transform pair the Ambiguity Func-
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tion [18] are powerful analytical tools to study optical diffraction,
phase space [19], and partially coherent light [20]. An optical
imaging process (such as propagation through a lens or free-space
propagations) can be interpreted as a simple geometrical trans-
formation in the WDF domain [21], [22], [23]. This conceptual
understanding is also useful in the light field imaging. Several
works draw connections between light fields and the Wigner
Distribution Function [24], [25], [26], [27].

In phasor field NLOS imaging, the Rayleigh-Sommerfeld
Diffraction (RSD) model is shown to be a key solution to Non-
Line-of-Sight imaging problems [8]. All existing applications of
the Wigner Distribution Function are used when Fresnel approx-
imation is valid. However, in NLOS imaging application, the
diffraction happens close to the relay wall where only the RSD
holds as an exact solution. This RSD also gives an exact solution
to the wave propagation as opposed to the approximations such
as Fresnel or Fraunhofer diffraction which are commonly known
in classical optics [28], [29], [30]. It is shown that the RSD
can be used to solve scanning free, real-time, three-dimensional
NLOS reconstruction problem [16]. Dove et al. [13] present a two
dimensional spatial Wigner Distribution Function in a paraxial
region with the approximated Fresnel diffraction for NLOS phasor
field model.

The RSD with the Wigner Distribution Function has never
been discussed in the context of real-world NLOS measurements.
In this paper, we will study the RSD in the Wigner Distribution
Function domain and compare it with the Fresnel diffraction under
real-world parameters like finite relay wall size, discrete spatial
sampling, and different acquisition schemes such as confocal and
non-confocal measurements. Another angle to describe our work
is to use the Wigner Distribution Function to explain Non-Line-
of-Sight imaging and clarify when approximations are useful and
meaningful in practice.

The key contributions of this paper are listed below:
• We study Rayleigh-Sommerfeld Diffraction in the Wigner Dis-
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tribution domain and show that the exact Rayleigh-Sommerfeld
Diffraction solution does not have any geometrical interpreta-
tions as opposed to the Fresnel approximation which has a shear
mapping interpretation in the Wigner Distribution Function
domain.

• We derive a lateral resolution limit from the exact Rayleigh-
Sommerfeld Diffraction solution for NLOS reconstructions.

• We provide an understanding of spatial sampling for phasor field
wavefronts on a relay wall.

• We characterize errors from the Fresnel diffraction. We show
that this error is less in the confocal acquisition, which makes
it an applicable candidate for reconstruction algorithms. In
addition, errors from the confocal acquisition and the non-
confocal acquisition are visualized in the Wigner Distribution
Function domain.

The first part of this work contains a short review of the Wigner
Distribution Function and its description of a linear system in
Sec. 2. Then using this linear system Wigner Distribution Function
description, we show how the Wigner Distribution Function is
being used to model and solve problems in Sec. 3. After that,
applications of the theoretical understanding are presented in
Sec. 4. The conclusion and discussion section is at the end in
Sec. 5.

RELATED WORK

In addition to works mentioned in the Introduction, there are other
developments in NLOS imaging.

For works in time-resolved optical picosecond NLOS imaging
are listed below. Fast solutions with n3log(n) complexity only
for confocal [6], [7], and for non-confocal measurements [16]. A
different perspective to solve NLOS imaging problem is to use
geometrical informations [9], [31]. Iterative solutions [32], [33],
[34] are similar to the algebraic reconstruction technique used in
the Computed Tomography. However, iterative solutions require a
computationally expensive forward model. GPU implementation
of backprojection with OpenGL [35] might decrease the compu-
tational cost for iterative solutions. Laplacian of Gaussian (LOG)
filtered backprojection [36] is similar to the Laplacian filter used
in the FBP method [3], but with a Gaussian kernel for denoising.
Several works explicitly explore occlusions [37], [38], [39], which
can improve the reconstruction quality. Hardware time delay can
be used to co-design temporal focusing with reconstructions [40].
To recover a specific room scenario, one can estimate the room
by fitting planes from temporal measurements [41]. Unlike re-
covering an image around the corner, tracking people with less
computational resources can be used [42]. Bayesian statistics re-
construction [43] shows that the robustness towards random errors
in the measurement, which is a different strategy comparing to all
solutions above. Some works aim to provide the simulation dataset
with different acquisition methods to NLOS imaging [11] as
well as benchmarks [44]. In addition to designing computational
methods, color NLOS imaging with single-pixel SPAD sensors
had been demonstrated [45], [46]. There are also several works
primarily focusing on the analysis for NLOS imaging: feature
visibility (missing cone problem) [47], a justification for the
filtered backprojection solution [10]. There are also some recent
review papers [48], [49] with online recorded presentations [50],
[51] which are good start points to catch on current published
works.

Methods used in NLOS imaging with a nanosecond temporal
resolution, or without temporal resolutions, or non-optical signals
are listed below. The inverse method used in the Nanosecond time
of flight sensors for a hidden scene reconstruction [52] can be
applied to picosecond time resolved measurements. The phasor
field wave models [8], [12], [13], [14], [15] can learn more from
regular imaging methods, such as optical speckle correlations
method [53], speckle for tracking hidden targets [54], passive
approach for localization [55], combining with deep learning
approach [56], image based tracking [57]. Time resolved NLOS
imaging community might also consider combining different sig-
nals, such as superheterodyne synthetic wave [58], [59], [60],
[61], acoustic [62], mid-infrared speckle [63] and long-wave
infrared [64] signals.

NOTATION SETUP

Throughout the entire paper, we use notations as follows. F(·)
stands for the Fourier transform, Wf (·, ·) for the Wigner Dis-
tribution Function (WDF) where the footnote f refers to an
input function. We use integral(s) to describe a linear operator
(for example, diffraction throughout this paper). For example, to
describe a standard linear operator in space or frequency (input,
output spatial/frequency representation), we express the linear
integral as follows:

fo(xo) =

∫
hxx(xo, xi)fi(xi) dxi

Fo(µo) =
1

2π

∫
hµµ(µo, µi)Fi(µi) dµi , (1)

In Eq. (1), an input fi(xi) and a output fo(xo) are denoted by
footnotes (the same for their frequency representations Fi(µi) =
F(fi(xi)), Fo(µo) = F(fo(xo))). For a one dimensional linear
operator above, the kernel hxx(xo, xi) in its primary domain x or
hµµ(µo, µi) in its frequency domain µ can be used to describe
the relationship between input fi(xi) and output fo(xo) functions
(signals). In later sections, hxx(xo, xi) is used to describe a wave
propagation which is tied to a physical diffraction process.

We list the most frequently used notations below:
• F(·): Fourier transform
• fi(xi)/Fi(µi): Input spatial/frequency representation
• fo(xo)/Fo(µo): Output spatial/frequency representation
• f∗(x)/F ∗(µ): Complex conjugate of spatial/frequency repre-

sentation
• hxx(xo, xi): Linear operator spatial integral kernel
• hxx(x): Linear operator spatial convolution kernel
• hµµ(µo, µi): Linear operator frequency integral kernel
• Wfi (xi, µi): Input Wigner Distribution Function for object fi.
• Wfo (xo, µo): Output Wigner Distribution Function for object
fo.

• ∗
x−y

: A convolution along both x− y dimension.

Abbreviations: Wigner Distribution Function (WDF), Rayleigh-
Sommerfeld Diffraction (RSD), Single-Photon Avalanche Diode
(SPAD), Non-Line-of-Sight (NLOS) imaging.

2 WIGNER DISTRIBUTION FUNCTION IN CLASSI-
CAL IMAGING

Most imaging phenomena can be (approximately) described by
the linearity of coherent wave or its intensity and formulated as



linear operators. In this section, we review the linear operator in
the WDF domain in a formula cookbook fashion [22], [23], [65].
Then we apply this WDF framework to show the RSD and Fresnel
diffraction (RSD, Fresnel propagators) in the WDF domain.

2.1 Wigner Distribution Function Representation

To describe a physical object, its spatial f(x) (x refers to the
spatial coordinate) and spatial frequency F (µ) signal representa-
tions can be converted through the Fourier transform. For example,
f(x) can be a image on the x coordinate and F (µ) refers
to its Fourier transform. In a word, a standard way to present
this object is either in the space or in the spatial frequency
domain. However, WDFWf (x, µ) gives us both space and spatial
frequency representation for this object which is different from the
Fourier transform.

The WDFWf (x, µ) of this object f can be calculated through
its f(x) or F (µ) is given below:

Wf (x, µ) =

∫ +∞

−∞
f(x+

τ

2
) f∗(x− τ

2
)︸ ︷︷ ︸

Spatial representation

e−j2πµτdτ

=

∫ +∞

−∞
F (µ+

ξ

2
)F ∗(µ− ξ

2
)︸ ︷︷ ︸

Spatial frequency representation

ej2πxξdξ , (2)

Wf (x, µ) in Eq. (2) is a function of both space x and
spatial frequency µ for a one dimensional object f . Overall, the
Wigner Distribution Function representation always doubles the
dimension for the notation of an object (1d signals have 2d WDF,
2d signals have 4d WDF).

2.2 Linear Operators in the Wigner Distribution Func-
tion Domain

Given an integral expression in space or frequency for a linear
operator, the skeleton for this linear operator in the WDF domain
can be derived immediately [22], [23], [65]. For example, a linear
system can be described as a linear operator to describe wave
propagation in the context of wave optics. For simplicity, we use
a one-dimensional linear operator as an example in this section.

The linear system WDF description aims to build a rela-
tionship between an input WDF Wfi (xi, µi) and a output WDF
Wfo (xo, µo) by using a four dimensional kernelK(xo, µo, xi, µi).
Intuitively speaking, it tries to capture how a transformation effects
in both space and spatial frequency domains.

Wfo (xo, µo) =
1

2π

∫∫
K(xo, µo, xi, µi)Wfi (xi, µi) dxidµi ,

(3)

K(xo, µo, xi, µi) in Eq. (3) links an input object Wfi (xi, µi)
and a output object Wfo (xo, µo) in the WDF domain. Once we
know a spatial hxx(xo, xi) or a frequency description hµµ(µo, µi)
(notations are stated in Eq. (1)) for a linear system, we can derive
the associated K(xo, µo, xi, µi) in Eq. (3) as follows,

Fig. 1. Two parallel planes (lines) setup geometry in Sec. 2.3. fi(x) and
fo(x) represent line slices of the field used in Eq. (5).

K(xo, µo, xi, µi) =

:=

∫∫
hxx(xo +

x
′

o

2
, xi +

x
′

i

2
)h∗xx(xo −

x
′

o

2
, xi −

x
′

i

2
)

exp
[
− jµox

′

o + jµix
′

i

]
dx
′

odx
′

i

:=
( 1

2π

)2 ∫∫
hµµ(µo +

µ
′

o

2
, µi +

µ
′

i

2
)h∗µµ(µo −

µ
′

o

2
, µi −

µ
′

i

2
)

exp
[
jµ
′

oxo − jµ
′

ixi

]
dµ
′

odµ
′

i , (4)

Eq. (3) and Eq. (4) can be adapted to any linear operators
with hxx(xo, xi) (or hµµ(µo, µi)) in analytical forms. Notice
that K(xo, µo, xi, µi) is completely described the linear physical
process. Constraints on variables (xo, µo, xi, µi) can be made to
model this linear physical process even more (such as an energy
constraint, a frequency bandwidth, and a spatial truncation). Some
special linear systems directly have closed-form expressions with-
out deriving by definitions from Eq. (3) and Eq. (4).

2.3 Diffraction in the Wigner Distribution Function Do-
main

In this section, we describe the RSD and Fresnel diffraction in the
WDF domain by using formulas in Sec.2.2. These two diffraction
propagators are related to the NLOS imaging problem.

Before deriving the RSD and Fresnel diffraction in the WDF
domain, we need to introduce a notation setup for this section. For
simplicity, in the one-dimensional Cartesian coordinate system,
we consider two parallel lines with a spacing z (distance between
lines). The geometrical setup is shown in Fig. 1. Spatial represen-
tations for hRSD

xx (xo, xi) (RSD) and hFre
xx(xo, xi) (Fresnel) are used

to describe the propagation from an input field fi(xi) to a output
field fo(xo). In order to derive the RSD and Fresnel diffraction in
the WDF domain, the first step is to write down hxx(xo, xi) in an
analytical form, then plugging hxx(xo, xi) into Eq. (3) and Eq. (4)
leads to WDF descriptions for the RSD and Fresnel diffraction.

The first step is to review a standard way of describing the
RSD and Fresnel diffraction in the space domain. Both the RSD
and the Fresnel diffraction in this geometrical parallel plane setup
case, can be treated as a spatial convolution [29], [66], [67].
Thus, it reduces one variable x = xo − xi for the kernel from



Fig. 2. The RSD and Fresnel diffraction in the WDF domain Eq. (10).Wfi (x, µ) andWfo (x, µ) are WDF for the input field fi(x) and the output field
fo(x) in Fig. 1. The RSD in the WDF domain is shown in the first row and the Fresnel is in the second row. Both propagators starts from a same
target field WDF Wfi (x, µ), the differences lie in transformations in the WDF domain. The RSD refers to a convolution along spatial coordinate x
with WDF of the RSD kernel WhRSD

z
(xi, µ) in Eq. (8). The Fresnel diffraction refers to a shear mapping in Eq. (9). We also plot the corresponding

value contours (level) for each WDF plot which are shown in dash windows.

hxx(xo, xi) to hxx(x) in Eq. (5). We use notation ∗
x

to represent
the convolution along x dimension.

fo(xo) = fi(xi) ∗ hxx(xo, xi) := fi(xi) ∗
x
hxx(x) , (5)

For the RSD, hxx(x) refers to:

hxx(x) = hRSD
xx (x) =

ejk
√
x2+z2

√
x2 + z2

(6)

For the Fresnel diffraction, hxx(x) refers to:

hxx(x) = hFre
xx(x) =

ejkz

jλz
e
jk
2z x

2

= α(z)e
jk
2z x

2

, (7)

k = ω/c in both cases stand for the wavenumber of a monochro-
matic wave, which ω refers to the angular frequency and c means
the speed of light travelling in air. z refers to the propagation
distance (The spacing between an input and a output plane).

The next step is to show the RSD and the Fresnel diffraction in
the WDF domain. Given a spatial kernel description hxx(xo, xi)
either from the RSD or the Fresnel diffraction, we can plug
Eq. (6 & 7) into Eq. (4) to calculate the corresponding kernel
K(xo, µo, xi, µi). Then, we use Eq. (3) to link input WDF
Wfi (xi, µ) with output WDF Wfo (xo, µ) by K(xo, µo, xi, µi).
Thus, we achieve WDF descriptions for the RSD and the Fresnel
diffraction. We skip algebraic steps here, calculations are provided
in Appendix 6.1.

The RSD and the Fresnel diffraction in the WDF domain are
given below.Wfi (xi, µ) andWfo (xo, µ) stand for the WDF of an
input and a output wavefront.

• RSD in the WDF domain in Eq. (8) refers to a convolution
along the spatial x direction.WhRSD

z
(xi, µ) stands for the WDF

of the RSD convolution kernel hRSD
z (x) = ejk

√
x2+z2

√
x2+z2

where a
footnote z denotes a propagating distance.

Wfo (xo, µ) =WhRSD
z

(xi, µ) ∗
x
Wfi (xi, µ)

:=

∫
WhRSD

z
(xo − xi, µ)Wfi (xi, µ) dxi , (8)

• Fresnel diffraction in the WDF domain in Eq. (9) refers to
a shear mapping (coordinate transformation) as a function of a
propagating distance z.

Wfo (x, µ) =Wfi (x−
z

k
µ, µ) , (9)

Then, an output intensity Io(xo) = |fo(xo)|2 of the wavefront
fo(xo) can be calculated from the marginal distribution of the
output WDF Wfo (xo, µ) (projection along frequency coordinate
µ),

Io(xo) = |fo(xo)|2

=

∫
Wfo (xo, µ)︸ ︷︷ ︸

Eq.(8 or 9)

dµ - projection along µ

IRSD
o (x) :=

∫∫
WhRSD

z
(x− xi, µ)Wfi (xi, µ) dxi dµ

IFre
o (x) :=

∫
Wfi (x−

z

k
µ, µ) dµ , (10)

Fig. 2 illustrates calculation steps in Eq. (10). Propagation
using the Fresnel diffraction results in shearing of the WDF.
Propagation using the exact RSD propagator, however, does not
have a simple geometrical interpretation in the WDF domain. In
the next section, more details are discussed in the context of NLOS
imaging.

3 WIGNER DISTRIBUTION FUNCTION IN NON-
LINE-OF-SIGHT IMAGING

In this section, we discuss NLOS imaging within the phasor field
virtual wave optics and the WDF framework. To understand how
the NLOS imaging problem is related to wave optics, we review
the phasor field method [8], [12], [13], [14], [15], [16]. Then



combining the phasor field framework with WDF descriptions,
we derive a spatial lateral resolution limit using the exact RSD so-
lution. We explore differences between confocal and non-confocal
measurements, and errors from the Fresnel approximation.

3.1 Phasor Field Model Review

We need to introduce some additional variables to illustrate
captured NLOS signals. g(x, y, t) represents a captured time
response a, coordinate (x, y) refers to a spatial location of a
detector pixel on a relay wall, t refers to a time index. We assume
all time responses g(x, y, t) are captured from a plane relay wall.

First, the phasor field p(x, y) is defined to be a single fre-
quency component of G(x, y, ω) which G(x, y, ω) stands for
the temporal Fourier transform of the captured time response
g(x, y, t). In Eq. (11), p(x, y) can be calculated through the
Fourier transform of a convolution in time with a temporal
harmonic function ejωt, or product with a shifted delta δ(ξ − ω)
in the Fourier domain,

p(x, y) = F(g(x, y, t) ∗
t
ejωt)

= G(x, y, ξ) · δ(ξ − ω) (11)

The angular frequency variable ω and its associated wavelength
λ are connected through the wavenumber k = ω/c = 2π/λ.
Overall, the phasor field p(x, y) is defined to be a single frequency
content of each captured time response g(x, y, t) in the Fourier
domain.

Then, a NLOS imaging process can be understood as follows:
An unknown phasor field pi(x, y) (input) carrying the object’s
information propagates to a relay wall, where the phasor field
po(x, y) is captured (output). The goal for reconstructions is to
invert this diffraction process from the captured field po(x, y) to
have a virtual image representation which ideally is the same as
pi(x, y). This diffraction process from pi(x, y) to po(x, y) can be
modeled as the RSD propagator which is shown in [8]. α(x, y)
refers to an additional amplitude correction factor.

po(x, y) = α(x, y)
(
pi(x, y) ∗

x−y
hRSD
xx (x, y, z)

)
∝ pi(x, y) ∗

x−y
hRSD
xx (x, y, z) (12)

hRSD
xx (x, y, z) in Eq.(12) refers to the RSD convolution kernel in

two dimensional case as following (one dimension in Eq. (6)),

hRSD
xx (x, y, z) =

ejk
√
x2+y2+z2√

x2 + y2 + z2
(13)

Next, since Eq. (12) describes the phasor field diffraction at
each frequency ω, by using Eq. (11) with different choices of
ω, pi(x, y, ω) has another frequency dimension. Then, one can

a. Across the entire paper, captured time responses (signal) refer to shifted
version of raw temporal measurements. This shifting process could be done
during the acquisition by calculating a line-of-sight time delay respect to a
distance between physical hardware and focused points on the relay wall.
More descriptions please refer to [3].

extend the model into a space-time broadband propagator [16] for
describing the captured space-time signals as following,

po(x, y, t) =

∫
ω∈Ω

ejωt
(
pi(x, y, ω) ∗

x−y
hxx(x, y, z)︸ ︷︷ ︸

Diffraction function at ω

)
dω

(14)
Here are some additional explanations for Eq.(14):

• Eq. (14) can be used to describe a propagation either from a
hidden target to captured signals (forward propagation), or from
captured signals to a virtual image (reconstruction).

• ω ∈ Ω stands for a closed frequency interval that is chosen
to match the captured system spatial and temporal resolution
(resolvable wavefronts). A NLOS picosecond time-resolved
system usually has 60 to 70 picosecond temporal resolution,
but phasor field wavefronts are limited by the spatial sampling
resolution on a relay wall. Given a discrete spatial sampling grid
with a spacing ∆ on the relay wall (for example 1 cm), phasor
field wave components need to be satisfied the half wavelength
condition λω > ∆/2, ω = 2πc/λω [68].

• In Eq.(11), one can also use a temporal illumination con-

volution kernel function ejωcte−
t2

2σ2 (Gaussian-modulated si-
nusoidal pulse) to generate the phaosr field pi(x, y, ω) =

F(g(x, y, t) ∗
t
ejωcte−

t2

2σ2 ), then uses Eq.(14) for reconstruc-
tion. This Gaussian-modulated sinusoidal pulse models an ob-
ject that reflects a temporally changing phasor field wavefront
which is shown in [8].

• The benefit of using Eq. (14) is that we can study the space-time
NLOS signals by decomposing them into diffraction processes
at each individual frequency. For example, the diffraction inside
Eq. (14), one can approximate hxx(x, y, z) in Eq. (14) by
the Fresnel propagator hFre

xx(x, y, z) instead of the RSD kernel
hRSD
xx (x, y, z). So that each frequency component has a geo-

metrical shear mapping transformation in the WDF domain as
shown in Eq. (10).

3.2 Spatial Lateral Resolution from Rayleigh Sommer-
feld Diffraction
To understand the achievable lateral resolution in NLOS recon-
structions, one have to understand the central frequency for the
phasor field. Here we provide an example of the phasor field cen-
tral frequency in a reconstruction pipeline. As we discussed ealier
in the previous section for Eq.(14), considering the phasor field

coming from a gaussian-modulated sinusoidal pulse ejωcte−
t2

2σ2 ,
ωc defines the central frequency for the captured phasor field.
Lateral resolution is bounded by the diffraction limits at the central
frequency ωc without exploiting optical occlusions in the hidden
scene [13]. Next, we want to show the lateral resolution at a central
frequency when using the exact RSD propagator given a finite size
relay wall.

First, we model a limited size relay wall using an aperture
function T (x, y). Generally speaking, this aperture function can
be modeled as real or complex functions which is used in optical
coded imaging. However, to derive lateral resolution limits, we
consider the aperture function as an binary function T (x, y) ∈
{0, 1} in Eq. (15). N stands for the aperture half side length (for
example N = 1 as a 2 m by 2 m scanning wall).

T (x, y) =

{
1, if |x| ≤ N, |y| ≤ N
0, otherwise

(15)



Fig. 3. Achievable lateral resolution from RSD discussed in Sec. 3.2 Eq. (16). a. we show the point spread function PSF (xt, yt, z, ω) from multiple
point targets in the hidden with T (x, y) (2m by 2m, red dash box), a target depth z = 0.5m away from a relay wall, a central wavelength λ = 4cm.
Point spread function varies at each lateral location. b. we pick five positions (color boxes from 1-5 in b) from a to illustrate the frequency bandwidth
(2d Fourier transform on the complex field). Point position at the center of aperture (number 1, red box) achieves almost maximum bandwidth
corresponding to λ/2. The further away from the center of the aperture, the worse distortion, and the smaller region is covered in the frequency
domain. c. we show a PSF plot and a reconstructed checkerboard pattern for two depth z = 0.5m - 2m.

Second, the achievable lateral resolution can be characterized
by the point spread function PSF (xt, yt, z, ω) from a point
object in the hidden scene at (xt, yt, z) shown in Eq. (16).
h(x−xt, y−yt, z) stands for the scattered phasor field wavefront
from a point object with distance z away from the aperture. The
multiplication between T (x, y) and h(x−xt, y−yt, z) stands for
the captured phasor field on the relay wall. h∗(x, y, z) stands for
the complex conjugate of the RSD propagation convolution kernel
h(x, y, z) = hRSD

xx (x, y, z) shown in Eq. (13).

PSF (xt, yt, z, ω)

=

∣∣∣∣∣∣∣
( Aperture function︷ ︸︸ ︷

T (x, y)

Point object wavefront︷ ︸︸ ︷
h(x− xt, y − yt, z)︸ ︷︷ ︸

Captured wavefront

)
∗
x−y

h∗(x, y, z)︸ ︷︷ ︸
RSD propagation kernel

∣∣∣∣∣∣∣
2

(16)

Eq. (16) can be used to calculate the lateral resolution limit as
a function of an aperture function T (x, y), the central frequency
ωc = 2πc/λc, the hidden point object position (xt, yt, z). The
choice of central wavelength λc depends on the spatial sampling
spacing ∆ which is λc > α · 2∆ forα > 1 in the discussion for
Eq. (14) and a system’s temporal resolution. Decreasing spatial
sampling spacing ∆ for a fixed aperture function T (x, y) would
lead more spatial sampling points N , but lower the achievable
central wavelength λc which leads a higher lateral resolution. This
central wavelength λc is chosen to be at the scale of 4 cm ∼ 6 cm
with ∆ = 1 cm in the previous phasor field experiments [8].
Fig. 3 shows the reconstructed image of multiple point targets that

lie in different lateral positions. Fig. 3 plots PSF (xt, yt, z, ω) in
Eq. (16) by using a central frequency ωc = 2πc/(λc = 4 cm)
with different target depth z settings. We can also study the
lateral resolution in the frequency space by applying the Fourier
transform to the phasor field F

(
(T (x, y)h(x−xt, y−yt, z)) ∗

x−y
h∗(x, y, z)

)
as shown in Fig. 3.

In the WDF domain, when using the Fresnel approximation
instead of the RSD to model diffraction, the resolution loss
has a more straightforward geometrical explanation. Given an
input field WDF Wpi (x, µ) and an aperture WDF WT (x, µ),
which T (x) = rect[x] = 1 (|x| < 1/2), 0 (oterwise) is a one
dimensional version of Eq. (15), then the output field Wpo (x, µ)
in the WDF domain is as below,

Wpo (x, µ) =WT (x, µ)︸ ︷︷ ︸
WDF of T (x)

∗
µ
Wpi (x−

z

k
µ, µ)

=
{ WT (x,µ)︷ ︸︸ ︷

2(1− |2x|) rect[x]︸ ︷︷ ︸
spatial truncation

sinc[2(1− |2x|µ)]
}

∗
µ
Wpi (x−

z

k
µ, µ) (17)

Eq. (17) uses the WDF Multiplication theorem: the multiplication
of T (x) and pi(x) in the space domain corresponds to the
convolution in the Fourier domain which is corresponding to a
convolution along the frequency coordinate ∗

µ
in the WDF domain.

The loss of resolution comes from WDF of the aperture function



WT (x, µ) in Eq. (17). Since WT (x, µ) has a truncation term
2(1− |2x|) rect[x] along the spatial x dimension. Multiplication
with rect[x] would result in zero everywhere in the WDF for
x > | 12 |. For a fixed size scanning aperture, the output field shears
more in the WDF domain as the distance z is increasing which
causes more loss of information in the frequency domain for the
output field WDFWpo (x, µ). This spatially dependent frequency
content is shown in both Fig. 3 and Fig. 6.

3.3 Differences between Confocal and Non-confocal
Measurements
The confocal NLOS measurement requires co-locating a SPAD
and a laser focused point on a relay wall and sequentially scanning
the co-located focused points to measure time responses [6].
Otherwise, general measurement setups are referred to as non-
confocal measurements [3]. In this section, we add an illumination
wavefront function into the phasor field forward diffraction model,
which characterize the differences between the confocal and the
non-confocal measurement. We model at the central wavelength
λc (with angular frequency ωc = 2πc/λc), but the analysis can be
applied to each frequency component.

Here are notations would be used in the following. The
geometrical setup is shown in Fig. 4 on the left side. We consider
a hidden object f(x, y) as an amplitude object at a depth z away
from a relay wall (on the x−y plane at z = 0). For a non-confocal
measurement, we have to assign variables (xi, yi) to represent
a single illumination point source on the relay wall. Collected
phasor field wavefronts at the central frequency are denoted by
pcon

o (x, y, ωc) for confocal and pn-con
o (x, y, ωc) for non-confocal.

The aperture function T (x, y) follows the same notation as in the
previous section.

We modify the phasor field forward diffraction model to
include two steps b: 1. Propagation from a virtual illumination
on the relay wall to a target plane. 2. Propagation from the target
plane back to the relay wall. For the confocal configuration, the
illumination aperture is as the same size as the aperture function.
Thus the illumination field can be modeled as a wavefront starting
from T (x, y). For the non-confocal configuration, the illumination
field is a spherical wavefront starting from a point illumination
source at (xi, yi) on x− y plane.

For the first step, Eq. (18) calculates the illumination wavefront
u(x, y) for confocal ucon(x, y) and non-confocal un-con(x, y) at
the target plane z. h(x, y, z) = hRSD

xx (x, y, z) refers to Eq. (13),

ucon(x, y) =
(
T (x, y)ejφ(x,y)

)
∗
x−y

h(x, y, z)

un-con(x, y) = h(x− xi, y − yi, z) (18)

For the second step, the received phasor field wavefront
po(x, y, ωc) from the hidden object f(x, y) is as follows,

po(x, y, ωc) =

∫∫ Illumination︷ ︸︸ ︷
u(x, y)

hidden object︷ ︸︸ ︷
f(x, y)︸ ︷︷ ︸

Target wavefront pi(x,y,ωc)

h∗(x− ν, y − µ, z) dν dµ

= pi(x, y, ωc) ∗
x−y

h∗(x, y, z) (19)

b. As for the confocal measurement, two-way propagation (from illumi-
nation to object and object to relay wall) can also be modeled as one-way
propagation by thinking the object emits light at the same time but traveling at
the half-speed [7].

For the same hidden object f(x, y), confocal and non-
confocal measurements ”see” different unknown target wave-
fronts pi(x, y, ωc) because of the illumination wavefront u(x, y)
as shown in Eq. (19). More importantly, Eq. (19) also refers
that one can probe hidden object’s f(x, y) different frequency
components by creating illuminating u(x, y) from different spatial
points on the relay wall. The reason is as follows. pi(x, y, ωc) =
u(x, y)f(x, y) comes from the hidden object f(x, y) with a spa-
tial modulation from the illumination wavefront u(x, y). u(x, y)
is different between ucon(x, y) in confocal measurements and
un-con(x, y) in non-confocal measurements in Eq. (18). Even
for non-confocal measurements from different single illumina-
tion points (xi, yi), the unknown target field pi(x, y, ωc) would
be different. Based on the Fourier transform multiplication and
convolution properties, multiplication in the space x − y domain
corresponding to a convolution in the spatial frequency space.
Different illumination wavefronts result in different frequency
convolution samples on the hidden object f(x, y).

Fig. 4 uses Eq. (19) to show differences between the non-
confocal and the confocal measurement in the WDF domain.
In Fig. 4, |WRSD

po
− WFre

po
|(x, µ) shows error maps between the

RSD and Fresnel diffraction in the WDF domain. The Fresnel
diffraction (shear mapping transform in the WDF domain) works
as a better approximation for the confocal acquisition than the non-
confocal acquisition. A confocal measurement contains more fre-
quency components of the hidden target than a single illumination
non-confocal measurement. This means that reconstructions from
confocal data should always look ”sharper” than reconstructions
from single illumination non-confocal data even under the same
lab condition. With multiple illumination points, non-confocal
measurements can increase frequency components of the hidden
target.

3.4 Error Metric for Fresnel Diffraction

Using Fresnel diffraction for reconstructions can be understood
as choosing a poor lens with ”aberrations” as opposed to use
RSD to model a perfect imaging system. The formula to describe
the errors made by the Fresnel diffraction can be obtained by
replacing the kernel h∗(x, y, z) in Eq. (16) by the Fresnel propa-
gation kernel hFre(x, y, z) = α(z)e

jk
2z (x2+y2). This focusing error

E(xt, yt, zt, x, y, z) is as follows,

E(xt, yt, zt, x, y, z)

=

∫∫ Aperture function︷ ︸︸ ︷
T (x, y)

Point object wavefront︷ ︸︸ ︷
h(x− xt, y − yt, zt)

Illumination wavefront︷ ︸︸ ︷
u(xt, yt, zt)

h∗Fre(x− ν, y − µ, z)︸ ︷︷ ︸
Fresnel propagation kernel

dν dµ (20)

As shown in Eq. (20), the focusing error E(xt, yt, zt, x, y, z)
is a six dimensional function. The first three arguments (xt, yt, zt)
are from a location of hidden point object and the remain-
ing (x, y, z) are from the Fresnel propagator hFre(x, y, z).
Since E(xt, yt, zt, x, y, z) depends on the illumination wavefront
u(xt, yt, zt) at the location of hidden target shown in Eq. (18), this
error in reconstructions made by the Fresnel diffraction for con-
focal measurements and non-confocal measurements are different.
The behavior of Fresnel diffraction operator varies depending on
acquisitions is also provided in Fig. 4 in the WDF domain.



Fig. 4. Difference between the RSD and the Fresnel propagation in the WDF domain with Non-confocal, confocal acquisitionsin Eq. (18 & 19)
Sec. 3.3. This numerical simulation use the same aperture function T (x, y) and a input hidden target f(x, y) for both non-confocal and confocal
acquisitions. The non-confocal single illumination point (xi, yi) is at the center. Illumination functions un-con(x, y) and ucon(x, y) are shown in
Eq. (18). Each row shows phasor field distributions in the WDF domain as a function of distance z. WRSD

po
(x, µ), WFre

po
(x, µ) refers to the phasor

field WDF distribution from the RSD or the Fresnel diffraction. For each depth, we plot the absolute difference between normalized WDF for RSD
and Fresnel |WRSD

po
−WFre

po
|(x, µ) (Normalized WDF’s value between 0-1). The Fresnel approximation for the non-confocal and the confocal show

different errors by the absolute difference map in the WDF domain (from red to green box).

Fig. 5. Error plot for Eq. (20). |E(xt, yt, zt, x, y, z)| refers to complex
error field magnitude. PSF (xt, yt, z = 2m,λ = 4cm) stands for the
ideal PSF plot from RSD propagator for referencing.

Overall, this error E(xt, yt, zt, x, y, z) ∈ C leads to both
magnitude and phase error in the reconstruction domain. We give
an illustration of this error in magnitude in Fig. 5 using the
illumination function ucon(x, y). One can use Eq. (20) to evaluate
more general situations with different error metrics depending on
desired applications.

4 APPLICATIONS

4.1 Aperture Coding

In Sec. 3.2, we model a scanning pattern on a relay wall as a real,
non-negative aperture function T (x, y) in Eq. (15, 16). In this
section, we consider three types of aperture function as shown in

Fig. 6. Type 1 describes a commonly used relay wall scanning
pattern. Type 1 also illustrates the spatially dependent loss of
resolution which is discussed in Sec. 3.2. As we start blocking
half of the aperture, spatially dependent effects are shown in the
reconstruction. This spatially dependent loss of resolution is also
discussed in Liu et al. [47] as the missing cone. Type 2 uses a
circular aperture. Type 3 refers to a coded aperture (a random
binary pattern), which randomly discards 50, 80 or 90 percent of
spatial measurements. Coded sampling can drastically decreases
the timing for acquisitions by co-designing measurements and
reconstructions. This can be explored in the future.

4.2 Phasor Field Wavefront Spatial Sampling

With the understanding of the lateral resolution in the Fourier
domain shown in Fig. 3, we can study the optimal phasor field
wavefront sampling. For example, one can come up the least
amount of spatial measurements respect to the spatial sampling
spacing ∆ which is discussed in Sec. 3.1. λ/2 criterion as a ”safe
option” in Eq. (14) Sec. 3.1 is redundant if the same target is away
from a relay wall.

The key idea is to apply the Fourier transform on captured
phasor fields as shown in Eq. (21) (F2d stands for the 2d Fourier
transform, the notation setup is in Sec. 3.3). Z stands for depths,
which is a distance between a hidden object f(x, y) and a relay
wall. By knowing the maximum frequency radius kmax(Z) of the
captured phasor field wavefront, one can use 2 ∗ kmax(Z) as a
spatial sampling criterion. This means for the same target but in
different depth Z , one can use different spatial sampling spacing



Fig. 6. Aperture coding for NLOS imaging with three examples (Type 1 to 3): Both three type examples are using the same NLOS letter dataset from
Liu et al. [8] at central wavelength λc = 4 cm. For each type, we show three images (Aperture function T (x, y), Phasor field wavefront input (real
part) and Result (output from RSD)). Type 1 stands for a typical scanning patterns on the relay wall. Type 2 refers to a circular scanning pattern
similar to Type 1. Type 3 is a random binary pattern (each element is either 0 or 1). Type 3’ T (x, y) is calculated from a uniform [0, 1] distributed
random matrix and threshold with fixed values 0.5 (Type 3 a), 0.8 (Type 3 b) and 0.9 (Type 3 c). Another words of saying this is that 50%, 80%, and
90% captured spatial signal is discarded randomly. All images are normalized individually.

∆ to sample the phasor field.

kmax(Z) ∼ F2d
[( Illumination︷ ︸︸ ︷
u(x, y)

Object︷ ︸︸ ︷
f(x, y)

)
∗
x−y

h(x, y, Z)
]

(21)

With more details about noise models and prior knowledge
of unknown targets, one can come up with an optimal sampling
pattern (number of spatial points, spatial frequency, pattern’s
spatial statistical distribution, and a trade-off between acquisition
time and system SNR) as a relation to the hidden target. In
practice, this co-designing step might save the timing of the acqui-
sition without loss of reconstruction qualities, become eye-safety
for the acquisition by incorporating multiplexed or compressed
measurement techniques.

5 CONCLUSION AND DISCUSSION

Our work also provides an understanding of the connections
between wave optics, Wigner Distribution Function, and NLOS
imaging problems. We show that the phasor field NLOS imaging
method with an exact Rayleigh-Sommerfeld Diffraction operator
does not have any standard geometrical interpretations in the
Wigner Distribution Function domain. The achievable theoretical
lateral resolution from the Rayleigh-Sommerfeld Diffraction op-
erator is given, and it can be evaluated numerically for different
settings. For analytical purposes, it is possible to use the Fresnel
diffraction as an approximation to model the phasor field propa-
gation as a shear mapping in the Wigner Distribution Function
domain if errors are considered. This error is different among
different acquisition schemes, and it is less for confocal than
for non-confocal measurements. Thus, the Fresnel approximations
can be considered on confocal measurements. The differences
between the confocal and non-confocal measurements are de-
scribed by adding the illumination wavefront function into the
phasor field model. This means that, theoretically, one can probe

a hidden object’s spatial frequency contents under non-confocal
acquisitions by illuminating virtual point source from different
positions on the relay wall.

One can also apply concepts introduced in Sec. 2.2 to other
linear NLOS imaging formation models in the Wigner Distribu-
tion Function domain. Our reliance on the Rayleigh-Sommerfeld
Diffraction operator offers both advantages and disadvantages.
The Rayleigh-Sommerfeld Diffraction operator is known to be
hard to treat analytically. This is why past treatments of Wigner
Distribution Function imaging rely on the Fresnel diffraction
operator to have a simplified analytical equation. Unfortunately,
this Fresnel approximation is not valid in most Non-Line-of-Sight
reconstructions. Knowing theoretical limits of the exact solution is
helpful, such as knowing the lateral resolution limit. Our work may
stimulate further researches, such as the compressed Non-Line-
of-Sight sampling, co-designing measurements and reconstruction
methods, and other Non-Line-of-Sight imaging related areas.

6 APPENDIX

6.1 Rayleigh-Sommerfeld Diffraction and Fresnel
Diffraction in the Wigner Distribution Function Domain

Consider two parallel planes with spacing z, both Rayleigh-
Sommerfeld Diffraction (RSD) and Fresnel diffraction link an
input wavefront fi(xi) to a output wavefront fo(xo) by a spatial
convolution with a convolution kernel hxx(xo, xi). Because of
the convolution kernel is a special case of an integral kernel,
hxx(xo, xi) becomes hxx(xo − xi).

fo(xo) = fi(xi) ∗ hxx(xo, xi) = fi(xi) ∗ hxx(xo − xi) , (22)

Using the Wigner Distribution Function (WDF) convolution
theorem, convolution along x in spatial domain applies convolu-



tion along x but in the WDF domain. This infers Eq. (22) has a
equivalent transformation in the WDF domain as follows,

Wfo (xo, µo) =Wh(x, µ) ∗
x
Wfi (x, µ) (23)

Overall, there are two approaches to derive the RSD, Fresnel
diffraction in the WDF domain. One is to apply WDF’s convolu-
tion theorem, which means that the only thing that has to be done
is to simplify Wh(x, µ) given the RSD and Fresnel convolution
kernel expressions. Another is to use Eq. (3,4) to derive by
definitions. We show the challenge of deriving the RSD in the
WDF using the first approach and derive the Fresnel diffraction in
the WDF based on definitions.

For the RSD, to best of our knowledge, its kernel expression

hxx(xo − xi) = ejk
√

(xo−xi)
2+z2√

(xo−xi)2+z2
does not have a simplified

analytical form in the WDF domain. In this work, we rely on
numerical implementations to evaluate the RSD in the WDF
domain.

As for the Fresnel diffraction, given approximations coming
from a binomial expansion on the RSD kernel, it is way more
easier to treat analytically. In the following, we show the Fresnel
diffraction in the WDF domain by definitions following algebraic
procedures in Eq. (3,4). The Fresnel spatial convolution kernel
hxx(xo − xi) can be written down as below and k stands for the
wavenumber,

hxx(xo − xi) =
ejkz

jλz
exp

[jk
2z

(xo − xi)
2
]

= α(z) exp
[jk

2z
(xo − xi)

2
]
, (24)

Eq. (24) describes the Fresnel diffraction in its spatial
representation. Use Eq. (25) to derive the integral kernel
K(xo, µo, xi, µi) in the WDF domain as follows:

K(xo, µo, xi, µi) =

∫∫
hxx(xo +

x
′

o

2
, xi +

x
′

i

2
)︸ ︷︷ ︸

term 1

h∗xx(xo −
x
′

o

2
, xi −

x
′

i

2
)︸ ︷︷ ︸

term 2

exp
[
− jµox

′

o + jµix
′

i

]
dx
′

odx
′

i ,

(25)

Plug hxx(xo, xi) from Eq. (24) into Eq. (25), simplify term 1 and
term 2,

term 1 = α(z) exp
[jk

2z
(xo − xi +

x
′

o

2
− x

′

i

2
)2
]

term 2 = exp
[
− jk

2z
(xo − xi −

x
′

o

2
+
x
′

i

2
)2
]
α∗(z) , (26)

Plugging in terms from Eq. (26), Eq. (25) becomes,

K(xo, µo, xi, µi)

=

∫∫
|α(z)|2 exp

[jk
z

(xo − xi)(x
′

o − x
′

i )︸ ︷︷ ︸
use a2−b2=(a+b)(a−b)

]
exp

[
− jµox

′

o + jµix
′

i

]
dx
′

odx
′

i

= |α(z)|2
∫ ∫

exp
[jk
z

(xo − xi)x
′

o

]
exp

[
− jµox

′

o

]
dx
′

o︸ ︷︷ ︸
term 3

exp
[
− jk

z
(xo − xi)x

′

i

]
exp

[
jµix

′

i

]
dx
′

i , (27)

Simplify term 3 in Eq. (27) by using the Fourier transform
property,

term 3 =

∫
exp

[jk
z

(xo − xi)x
′

o

]
exp

[
− jµox

′

o

]
dx
′

o

= 2πδ(µo −
k(xo − xi)

z
)

= 2πδ(xi − xo +
z

k
µo) , (28)

Replace term 3 in Eq. (27) by Eq. (28),

K(xo, µo, xi, µi)

= |α(z)|2 · 2πδ(xi − xo +
z

k
µo)∫

1 · exp
[
− j
(k(xo − xi)

z
− µi

)
x
′

i

]
dx
′

i

= |α(z)|2 · 2πδ(xi − xo +
z

k
µo) · 2πδ(

k

z
(xo − xi)− µi) ,

(29)

Since Eq. (29) consists of a multiplication between two delta
functions, we can use it as a constraint to simplify variables,{

xi − xo + z
kµo = 0

k
z (xo − xi)− µi = 0 ,

(30)

which leads to constraints xi = xo − z
kµo and µi = µo.

Above all, in the WDF domain, the Fresnel diffraction integral
kernel K(xo, µo, xi, µi) is as follows,

K(xo, µo, xi, µi) = (2π)2|α(z)|2 δ(xi − xo +
z

k
µo) δ(µi − µo)

K(xo, µo, xi, µi)

normalize︷︸︸︷
= δ(xi − xo +

z

k
µo) δ(µi − µo) , (31)

Using K(xo, µo, xi, µi) in Eq. (31) and plugging it in Eq. (3),
then the corresponding input, output field WDF transformation
using the Fresnel diffraction is as follows,

Wfo (xo, µo)

=
1

2π

∫∫
K(xo, µo, xi, µi)Wfi (xi, µi) dxidµi

∝
∫∫

δ(xi − xo +
z

k
µo)δ(µi − µo)Wfi (xi, µi) dxidµi , (32)

Finally, applying constraints on variables for Eq. (32) leads to
a shear mapping in the WDF domain,

Wfo (x, µ) =Wfi (x−
z

k
µ, µ) , (33)
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